
1

Cross-Origin Resource Sharing 
For The Web (Extension)
Tim

Senior Front-End Engineer @ Dashlane

twitter.com/tpillard

timtech.blog



2

Table of contents

1. Cross-Origin Resource Sharing ?
– Origin

2. Cross-Origin Resource Sharing !?
– Same-Origin Policy

3. Cross-Origin Resource Sharing.
– OPTIONS CORS Preflight Requests
– Access-Control-Allow-* Response Headers

4. CORS For The Web
– Tips & tricks to avoid problems

5. CORS For The Web (Extension)
– The tale of an Extension Production incident

6. Web Security In a Post-Spectre World
– CORB, ORB, COOP, COEP & friends



3

Cross-Origin Resource Sharing ?



4

Cross-Origin Resource Sharing



5

Cross-Origin



6

Origin



7

“often used as the scope of authority or privilege 
by user agents”

“as an HTTP header field, indicates which origins 
are associated with an HTTP request”
—IETF RFC6454 (slightly adpated)

“the origin of a URI serialized into a string”

“The Origin request header indicates where a 
fetch originates from.”
—Origin HTTP Header, MDN



8

Origin

• Originally defined in IETF RFC6454: The Web Origin Concept

• Origin HTTP Header definition then supplanted in WHATWG Fetch Standard

https://tools.ietf.org/html/rfc6454
https://tools.ietf.org/html/rfc6454#section-7


Origin

• http://localhost:3000/foo

• https://app.company.test/login

• https://www.company.test/create-account

• https://api.company.test/authentication

• chrome-extension://fdjamakpfbbddfjaooikfcpdsjohcfmg/bar

https://api.company.test/authentication


Origin

• http://localhost:3000/foo
● https://app.company.test/login
● https://www.company.test/create-account
● https://api.company.test/authentication
● chrome-extension://fdjamakpfbbddfjaooikfcpdsjohcfmg/bar



Scheme / Protocol

• http:

• https:

• chrome-extension:

Host

• localhost

• api.company.test

• fdjamakp...ohcfmg

Origin

Port

• 3000

• None specified

• None specified

URL

• http://localhost:3000/foo
● https://api.company.test/authentication
● chrome-extension://fdjamakpfbbddfjaooikfcpdsjohcfmg/bar



12

Cross-Origin Resource Sharing !?



13

Cross-Origin Resource Sharing?



14

Same-Origin



15

Same-Origin



16

Same-Origin Policy
The same-origin policy (SOP) is a critical security mechanism that restricts how a 
document or script loaded from one origin can interact with a resource from another 
origin.
It helps isolate potentially malicious documents, reducing possible attack vectors.



17

“There is no single same-origin policy.”
—W3C



18

“Although the same-origin policy differs 
between APIs, the overarching intent is to let 
users visit untrusted web sites without those 
web sites interfering with the user's session with 
honest web sites.”
—W3C



19

Same-Origin Policy

• Everything you want from and to the same origin.
• Cross-Origin Embeds 

– <script src=”https://app.dashlane.com/carbon.js”></script>

• Cross-Origin Writes
– <form method=”POST” action=”https://api.dashlane.com/” />

• Cross-Origin Reads
– fetch(‘https://api.dashlane.com/’).then((response) => ...)

So, what can we typically do



20

“In other words, Same-Origin policy typically 
allows (some) Cross-Origin Embeds & Writes by 
default for backwards compatibility, but 
restricts Cross-Origin Reads.”
—Tim, after reading some stuff on the Internet



21

“Therefore, you need to explicitly configure & 
check anything & everything that could be used 
in a cross-origin context, whether you want to 
allow, disallow, or restrict it.”
—Tim, after enough bad experiences with Cross-Origin things



22

But Why?




23

But Why?

• Same-origin policy:
– is a “critical security mechanism”
– it “reduces possible attack vectors”



24

But Why?

• Same-origin policy:
– is a “critical security mechanism”
– it “reduces possible attack vectors”

• Ok. But why is it “critical” ? Which “possible attack vectors” ? What attacks?



25

But Why?

• Same-origin policy:
– is a “critical security mechanism”
– it “reduces possible attack vectors”

• Ok. But why is it “critical” ? Which “possible attack vectors” ? What attacks?

• There are mainly two contenders:
– Clickjacking / Cross-Origin Framing
– Cross Site Request Forgery (CSRF)



26

Cross-Site Request Forgery (CSRF)



27



28

Clickjacking / Cross-Origin Framing



29

Source: web.dev/same-origin-policy

https://web.dev/same-origin-policy/


30

Cross-Origin Resource Sharing.
Cross-Origin Resource Sharing (CORS) is an HTTP-header based mechanism that 
allows a server to indicate any other origins than its own from which a browser should 
permit loading of resources.



31

OPTIONS CORS Preflight Requests
Unlike “simple requests”, for "preflighted" requests the browser first sends an HTTP 
request using the OPTIONS method to the resource on the other origin, in order to 
determine if the actual request is safe to send.



32

OPTIONS CORS Preflight Request

const xhr = new XMLHttpRequest();
xhr.open('POST', 'https://bar.other/resources/post-here/');
// Setting a custom header
xhr.setRequestHeader('X-PINGOTHER', 'pingpong');
// Setting a “non-simple request compliant” / “unsafe” Content-type header value
xhr.setRequestHeader('Content-Type', 'application/xml');
...
xhr.send('<person><name>Arun</name></person>');

https://bar.other/resources/post-here/


33

S
o
u
rc
e:

 d
ev

el
op

er
.m

oz
ill

a.
or

g/
do

cs
/W

eb
/H

T
T

P
/C

O
R

S

https://developer.mozilla.org/docs/Web/HTTP/CORS


34

CORS For The Web
A few tips & tricks to avoid problems



35

CORS For The Web

• Avoid 3rd party / cross-origin if you don’t have a very good reason
– Host 3rd party assets yourself (fonts, scripts, images…)
– Expose & selectively 3rd party / cross-origin HTTP APIs & endpoints
– Be wary of 3rd party analytics, trackers, ad systems, service providers...

Generally prefer same-origin communication



36

CORS For The Web

• Double-check any “simple requests” or cross-origin operations that are 
normally permitted by Same-Origin Policy.

– What is permitted today, mostly is for backwards compatibility.
– Tomorrow, everything will be different, and your web product will break.

Same-Origin Policy: handle with care



37

CORS For The Web

• Going further, you can pretend Same-Origin Policy doesn’t allow anything that 
is cross-origin, and always rely on CORS & necessary security mechanisms 
instead.

Actually, pretend Same-Origin Policy doesn’t allow anything



38

CORS For The Web

• The spec is the first source of truth.
• Browsers work very hard to keep users secure, but they:

– sometimes only partially implement, divert from, or go beyond the spec.
– don’t always share the same vision.
– have bugs & regressions all the time.
– regularly run experiments on real users.

• Monitor & analyze your traffic.

• Test recklessly.

• Read the changelogs, documentations, bugtrackers.

The cake spec is a lie



39

CORS For The Web (Extension)
The tale of an Extension production incident.



40

CORS For The Web (Extension)

Technical Storytelling (Twitter)

The tale of an Extension production incident

https://twitter.com/tpillard/status/1349669957764861952


41

CORS For The Web (Extension)
The tale of an Extension production incident



42

CORS For The Web (Extension)
The tale of an Extension production incident



43

CORS For The Web (Extension)
The tale of an Extension production incident



44

CORS For The Web (Extension)
The tale of a Dashlane Extension production incident



45

CORS For The Web (Extension)
The tale of an Extension production incident



46

Web Security in a Post-Spectre World



47



48



49

Web Security in a Post-Spectre World

• Cross-Origin Read Blocking (CORB)

• Opaque-Response Blocking (ORB)

• Out-Of-Process iFrames (OOPIF)

• Cross-Origin Resource Policy (CORP)

• Resource Isolation Policy

• Site Isolation

• Project Fission

• And more!

See: w3c.github.io/webappsec-post-spectre-webdev

A girl has many names

https://w3c.github.io/webappsec-post-spectre-webdev/


Copyright © 2021 Dashlane


