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Forms on the web
 A document section containing interactive controls for submitting information.
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HTML <form> element

• Markup
• Handling with JavaScript
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HTML <form> element: markup

<form id="login-form">
  <label for="email">Email:</label>
  <input type="email" name="email" id="email" required>
  <label for="password">Password:</label>
  <input type="password" name="password" id="password" required>
  <button type="submit">Log-in</button>
</form>
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HTML <form> element: handling with JavaScript

const form = document.querySelector('#login-form');
form.addEventListener('submit', function handleSubmit(evt) {
  evt.preventDefault();
  const formData = new FormData(evt.target);
  const values = {};
  for (let [name, value] of formData.entries()) {
    values[name] = value;
  }
  attemptUserLogIn(values);
});



7

Forms on the web with React
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Forms on the web with React



9

Forms on the web with React
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“React allows you to express your UI as a 
function of its state.”
—Some person on the Internet
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“When using React for the web, the DOM 
becomes an implementation detail.”
—Probably the same person on the Internet
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Forms on the web with React
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Controlled inputs
This is the way
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Controlled inputs
This is the way

A controlled input is a form input which state is managed solely through React.

In other words, with a controlled input:
● The value is tracked, read, updated by the app (React State, Reducer, Redux, etc…)
● Every user input is handled through React’s Event System to determine the new value.
● The default browser behavior is suppressed.
● The value is always set as a prop.
● Every value change triggers a re-render of the enclosing component.
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Controlled input form example



16

A Form component with React using a controlled input
function Form() {
  const [value, setValue] = React.useState('');

  const handleChange = (evt) => {
    // Perform “on the fly” validation, transformation logic here if needed
    setValue(evt.target.value);
  };

  const handleSubmit = (evt) => {
    evt.preventDefault();
    performLogIn(value);
  };

  return (
    <form onSubmit={handleSubmit}>
      <label htmlFor="password-input">Password:</label>
      <input id="password-input" type="password" value={value} onChange={handleChange} />
      <button type="submit">
        Submit
      </button>
    </form>
  );
}
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Uncontrolled inputs
The old ways



18

Uncontrolled inputs
The old ways

A uncontrolled input is a form input which state is managed by the browser through the DOM.

In other words, with an uncontrolled input:
● In most cases, the app will only set the input’s default value via the defaultValue prop.
● Every user input is handled by the browser to determine the new value, according to input attributes.
● The default browser behavior is embraced.
● No superfluous React rendering.
● No extra state management required.
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Uncontrolled input form example
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A Form component with React using an uncontrolled input
function Form() {
  const inputRef = React.useRef(null);

  const handleSubmit = (evt) => {
    evt.preventDefault();
    // Alternatively, use FormData or equivalent. 
    const { current: input } = inputRef;
    performLogIn(input.value);
  };

  // You can still use onChange to trigger side-effects if needed

  return (
    <form onSubmit={handleSubmit}>
      <label htmlFor="password-input">Password:</label>
      <input ref={inputRef} id="password-input" type="password" />
      <button type="submit">
        Submit
      </button>
    </form>
  );
}
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Key differences & impact
How to consider going one way or the other
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Key differences & impact
How to consider going one way or the other

● Philosophy.
● Consistency.
● Feature complexity.
● Code complexity.
● Performance.
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Key takeaways
If there’s only one slide you should refer to, it’s that one (the next one)
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Key takeaways
If there’s only one slide you should refer to, it’s that one

● Both approaches are fine.
● There is no React police.
● Use whatever works best for you and your use case.
● Consider the implications, alternatives & keep an open mind.
● Remember the rule of least power.
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