
1

Forms handling w/ React:
Giving Up Control
Tim

Senior Front-End Engineer @ Dashlane

twitter.com/tpillard

timtech.blog

2

Table of contents

1. Forms on the web

2. Forms on the web with React

3. Controlled inputs: This is the way

4. Uncontrolled inputs: The old ways

5. Key differences & impact

6. Key takeways

3

Forms on the web
 A document section containing interactive controls for submitting information.

4

HTML <form> element

• Markup
• Handling with JavaScript

5

HTML <form> element: markup

<form id="login-form">
 <label for="email">Email:</label>
 <input type="email" name="email" id="email" required>
 <label for="password">Password:</label>
 <input type="password" name="password" id="password" required>
 <button type="submit">Log-in</button>
</form>

6

HTML <form> element: handling with JavaScript

const form = document.querySelector('#login-form');
form.addEventListener('submit', function handleSubmit(evt) {
 evt.preventDefault();
 const formData = new FormData(evt.target);
 const values = {};
 for (let [name, value] of formData.entries()) {
 values[name] = value;
 }
 attemptUserLogIn(values);
});

7

Forms on the web with React

8

Forms on the web with React

9

Forms on the web with React

10

“React allows you to express your UI as a
function of its state.”
—Some person on the Internet

11

“When using React for the web, the DOM
becomes an implementation detail.”
—Probably the same person on the Internet

12

Forms on the web with React

13

Controlled inputs
This is the way

14

Controlled inputs
This is the way

A controlled input is a form input which state is managed solely through React.

In other words, with a controlled input:
● The value is tracked, read, updated by the app (React State, Reducer, Redux, etc…)
● Every user input is handled through React’s Event System to determine the new value.
● The default browser behavior is suppressed.
● The value is always set as a prop.
● Every value change triggers a re-render of the enclosing component.

15

Controlled input form example

16

A Form component with React using a controlled input
function Form() {
 const [value, setValue] = React.useState('');

 const handleChange = (evt) => {
 // Perform “on the fly” validation, transformation logic here if needed
 setValue(evt.target.value);
 };

 const handleSubmit = (evt) => {
 evt.preventDefault();
 performLogIn(value);
 };

 return (
 <form onSubmit={handleSubmit}>
 <label htmlFor="password-input">Password:</label>
 <input id="password-input" type="password" value={value} onChange={handleChange} />
 <button type="submit">
 Submit
 </button>
 </form>
);
}

17

Uncontrolled inputs
The old ways

18

Uncontrolled inputs
The old ways

A uncontrolled input is a form input which state is managed by the browser through the DOM.

In other words, with an uncontrolled input:
● In most cases, the app will only set the input’s default value via the defaultValue prop.
● Every user input is handled by the browser to determine the new value, according to input attributes.
● The default browser behavior is embraced.
● No superfluous React rendering.
● No extra state management required.

19

Uncontrolled input form example

20

A Form component with React using an uncontrolled input
function Form() {
 const inputRef = React.useRef(null);

 const handleSubmit = (evt) => {
 evt.preventDefault();
 // Alternatively, use FormData or equivalent.
 const { current: input } = inputRef;
 performLogIn(input.value);
 };

 // You can still use onChange to trigger side-effects if needed

 return (
 <form onSubmit={handleSubmit}>
 <label htmlFor="password-input">Password:</label>
 <input ref={inputRef} id="password-input" type="password" />
 <button type="submit">
 Submit
 </button>
 </form>
);
}

21

Key differences & impact
How to consider going one way or the other

22

Key differences & impact
How to consider going one way or the other

● Philosophy.
● Consistency.
● Feature complexity.
● Code complexity.
● Performance.

23

Key takeaways
If there’s only one slide you should refer to, it’s that one (the next one)

24

Key takeaways
If there’s only one slide you should refer to, it’s that one

● Both approaches are fine.
● There is no React police.
● Use whatever works best for you and your use case.
● Consider the implications, alternatives & keep an open mind.
● Remember the rule of least power.

Copyright © 2020 Dashlane

